Taylor Lange Teaching Assistant

Email: taylor.z.lange@maine.edu

Econ Lab Hours: Mondays 2pm-3pm Tuesdays 11am-12pm Thursdays 11am-12pm

Preview Of Regression

Data Description:

Data Description:

• Mean, Median, Mode

Data Description:

- Mean, Median, Mode
- Standard Deviation, Variance

Data Description:

- Mean, Median, Mode
- Standard Deviation, Variance

How do two variables relate to each other?

Correlation - how strongly 2 variables covary

How do two variables relate to each other?

Correlation - how strongly 2 variables covary

Economics:

Supply & Demand - Price & Quantity Demanded

How do two variables relate to each other?

Correlation - how strongly 2 variables covary

Economics:

Supply & Demand - Price & Quantity Demanded

Economics' Prefered Method

Economics' Prefered Method

A different type of correlation

Economics' Prefered Method

A different type of correlation

What is the relationship between

• Dependant Variable - y

Economics' Prefered Method

A different type of correlation

What is the relationship between

- Dependent Variable y
- Explanatory Variable(s) x₁, x₂, ...

Economics' Prefered Method

A different type of correlation

What is the relationship between

- Dependent Variable y
- Explanatory Variable(s) x₁, x₂, ...

Economics' Prefered Method

A different type of correlation

What is the relationship between

- Dependant Variable y
- Explanatory Variable(s) x₁, x₂, ...

Measures:

• Direction (+/-) (same as Correlation)

Economics' Prefered Method

A different type of correlation

What is the relationship between

- Dependant Variable y
- Explanatory Variable(s) x₁, x₂, ...

- Direction (+/-) (same as Correlation)
- Strength (Predictability)

Economics' Prefered Method

A different type of correlation

What is the relationship between

- Dependant Variable y
- Explanatory Variable(s) x₁, x₂, ...

- Direction (+/-) (same as Correlation)
- Strength (Predictability) (same as Correlation)

Economics' Prefered Method

A different type of correlation

What is the relationship between

- Dependant Variable y
- Explanatory Variable(s) x₁, x₂, ...

- Direction (+/-) (same as Correlation)
- Strength (Predictability) (same as Correlation)
- Magnitude

Economics' Prefered Method

A different type of correlation

What is the relationship between

- Dependant Variable y
- Explanatory Variable(s) x₁, x₂, ...

- Direction (+/-)
- Magnitude

What are you trying to investigate?

What are you trying to investigate?

How much does the weight of a car influence its fuel efficiency?

How much does the weight of a car influence its fuel efficiency?

Miles Per Gallon of Cars Weight of Cars N=39 N=39 12 15 Frequency Frequency 8 10 4 5 0 0 20 35 2 10 15 25 30 3 Miles Per Gallon Weight (Tons) Mean 20.09 3.21

6

How much does the weight of a car influence its fuel efficiency?

Miles Per Gallon of Cars Weight of Cars N=39 N=39 12 15 Frequency Frequency 8 10 4 5 0 0 20 25 30 35 2 3 10 15 Miles Per Gallon Weight (Tons) Mean 20.09 3.21 Variance 36.32 0.96

6

How much does the weight of a car influence its fuel efficiency?

Miles Per Gallon of Cars Weight of Cars N=39 N=39 12 15 Frequency 8 10 4 5 0 0 15 20 25 30 35 2 3 10 Miles Per Gallon Weight (Tons) Mean 20.09 3.21 Variance 36.32 0.96 Covariance: -5.11

6

Frequency

How much does the weight of a car influence its fuel efficiency?

Miles Per Gallon of Cars Weight of Cars N=39 N=39 12 15 Frequency Frequency 8 10 4 5 0 0 15 20 25 30 35 2 3 10 Miles Per Gallon Weight (Tons) Mean 20.09 3.21 Variance 36.32 0.96 Covariance: -5.11

6

Correlation: -0.86

How much does the weight of a car influence its fuel efficiency? Explanatory Variable - x axis Dependent Variable - y axis

Mazda RX4

Mazda RX4 Weight: 2.62 Tons

Mazda RX4 Weight: 2.62 Tons Miles Per Gallon: 21

Mazda RX4 Weight: 2.62 Tons Miles Per Gallon: 21

How much does the weight of a car influence its fuel efficiency?

How much does the weight of a car influence its fuel efficiency?

How much does the weight of a car influence its fuel efficiency?

Y = mx + b m = slope b = intercept

Math Notation

How much does the weight of a car influence its fuel efficiency?

m = slope b = intercept Econometric Notation: $Y = \beta_0 + \beta_1 x_1$ $\beta_1 = slope$ $\beta_0 = intercept$

Math Notation

Y = mx + b

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation $Y = \beta_0 + \beta_1 x_1$

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation Y = $\beta_0 + \beta_1 x_1$

Y = Dependant Variable

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation Y = $\beta_0 + \beta_1 x_1$

Y = Dependant Variable X_1 = Explanatory Variable

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation Y = $\beta_0 + \beta_1 x_1$

Y = Dependant Variable X₁ = Explanatory Variable β_0 = Intercept Parameter

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation Y = $\beta_0 + \beta_1 x_1$

Y = Dependant Variable X_1 = Explanatory Variable β_0 = Intercept Parameter β_1 = Slope Parameter

How much does the weight of a car influence its fuel efficiency?

How much does the weight of a car influence its fuel efficiency?

$$Y = \beta_0 + \beta_1 x_1$$

How much does the weight of a car influence its fuel efficiency?

 $V = 0 + 0 \times$

Х

Econometric Model/Equation Y = $\beta_0 + \beta_1 x_1$

Y = Dependant Variable X_1 = Explanatory Variable β_0 = Intercept Parameter β_1 = Slope Parameter

Econometric Model/Equation $Y = \beta_0 + \beta_1 x_1 + \varepsilon$

Y = Dependant Variable X_1 = Explanatory Variable β_0 = Intercept Parameter β_1 = Slope Parameter ϵ = Error

Econometric Model/Equation $Y = \beta_0 + \beta_1 x_1 + \epsilon$

Y = Dependant Variable X_1 = Explanatory Variable β_0 = Intercept Parameter β_1 = Slope Parameter ϵ = Error

The <u>Best Fit Regression Line</u> is the one that creates the smallest distances between the data and the prediction line

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation $Y = \beta_0 + \beta_1 x_1 + \epsilon$

> Y= Miles Per Gallon x_1 = Weight (Tons) ϵ = Error

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

> Y= Miles Per Gallon x_1 = Weight (Tons) ϵ = Error

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$

Y= Miles Per Gallon x_1 = Weight (Tons) x_2 = Horsepower (horses) ϵ = Error

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$

Y= Miles Per Gallon x_1 = Weight (Tons) x_2 = Horsepower (horses) ϵ = Error

Results

 $Y = 37.22 - 3.88x_1 - 0.03x_2$

Interpreting Results

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation Y = $37.22 - 3.88x_1 - 0.03x_2$

Y= Miles Per Gallon x₁ = Weight (Tons) x₂ = Horsepower (horses)

Interpreting Results

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation Y = $37.22 - 3.88x_1 - 0.03x_2$

Y= Miles Per Gallon x₁ = Weight (Tons) x₂ = Horsepower (horses)

A 1 unit (Ton) increase in the weight of a car decreases its fuel efficiency by 3.88 miles per hour

Interpreting Results

How much does the weight of a car influence its fuel efficiency?

Econometric Model/Equation Y = $37.22 - 3.88x_1 - 0.03x_2$

Y= Miles Per Gallon x₁ = Weight (Tons) x₂ = Horsepower (horses)

A 1 unit (Ton) increase in the weight of a car decreases its fuel efficiency by 3.88 miles per hour

A 1 unit (Horse) increase in the horsepower of a car decreases its fuel efficiency by 0.03 miles per hour