Other Regarding Behavior: Intro to Cooperation & Game Theory

Taylor Lange

Agenda

- 1. My Background
- 2. Simple Game Theory
- 3. Social Dilemmas
- 4. Reciprocal Solutions
- 5. Online Game

• Evolutionary Social Scientist

- Evolutionary Social Scientist
 - o Cultural Evolution

- Evolutionary Social Scientist
 - Cultural Evolution
 - Cooperation Science

- Evolutionary Social Scientist
 - Cultural Evolution
 - Cooperation Science
 - Network Science

- Evolutionary Social Scientist
 - Cultural Evolution
 - \circ Cooperation Science
 - Network Science
- Previous Work

- Evolutionary Social Scientist
 - Cultural Evolution
 - Cooperation Science
 - Network Science
- Previous Work:
 - Deliefs about Climate Change in the Evangelical Church

- Evolutionary Social Scientist
 - Cultural Evolution
 - Cooperation Science
 - Network Science
- Previous Work:
 - Beliefs about Climate Change in the Evangelical Church
- Current Work: Food Buying Clubs

- Evolutionary Social Scientist
 - Cultural Evolution
 - Cooperation Science
 - Network Science
- Previous Work:
 - Deliefs about Climate Change in the Evangelical Church
- Current Work: Food Buying Clubs
 - Cooperation
 - Preferences
 - o Evolution

Neoclassical Assumptions

- . Unbounded Rationality
- 2. Temporal Stability

Neoclassical Assumptions

- 1. Unbounded Rationality
- 2. Temporal Stability
- B. Exclusive Self-Interest

"Game Theory can be defined as the study of mathematical models of conflict and cooperation between intelligent, rational decision makers"

- Roger Myerson

Game Theory: Analysis of Conflict

2 Categories

2 Categories

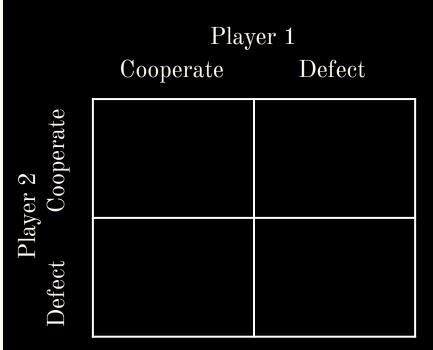
1. Cooperative - Agents make decisions based on contracts

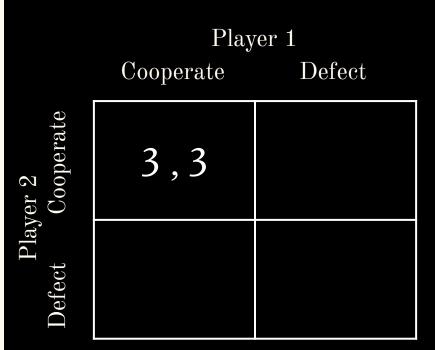
- 2 Categories
 - 1. Cooperative Agents make decisions based on contracts
 - 2. Non-cooperative Agents make decisions unbounded by prior agreements

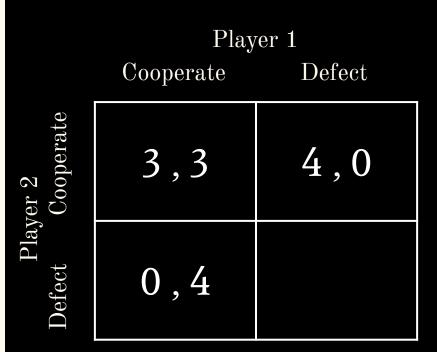
- 2 Categories
 - 1. Cooperative Agents make decisions based on contracts
 - 2. Non-cooperative Agents make decisions unbounded by prior agreements

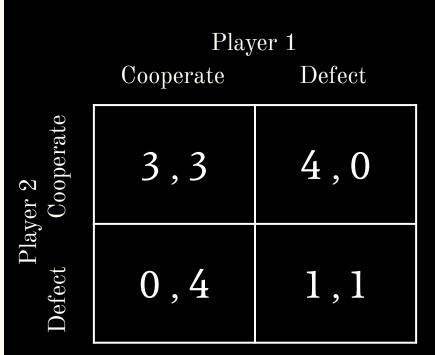
Prisoner's

Dilemma


Player 2


Player 1


Prisoner's Dilemma



Cooperate Player 2

Player 1 - Expected Payoffs

Prisoner's Dilemma

C D

3,3 4,0

0,4 1,1

Prisoner's Dilemma

Player 1 - Expected Payoffs

• Cooperate:

$$3(.5) + 0(.5) = 1.5$$

 \mathcal{C} \mathcal{D}

3,3	4,0
0,4	1,1

Prisoner's Dilemma

Player 1 - Expected Payoffs

- Cooperate: 3(.5) + 0(.5) = 1.5
- Defect: 4(.5) + 1(.5) = 2.5

C D

3,3	4,0
0,4	1,1

Prisoner's Dilemma

Player 1 - Expected Payoffs

• Cooperate: 3(.5) + 0(.5) = 1.5

• Defect:

$$4(.5) + 1(.5) = 2.5$$

C D

3,3	4,0
0,4	1,1

Group - Payoffs

Prisoner's Dilemma

C D

3,3 4,0

0,4 1,1

Prisoner's Dilemma

Group - Payoffs

• Cooperate - Cooperate

$$\circ$$
 3 + 3 = 6

C D

3,3 4,0

0,4 1,1

Prisoner's Dilemma

Group - Payoffs

• Cooperate - Cooperate

$$0 3 + 3 = 6$$

• Cooperate - Defect

$$\circ \quad 4+0=4$$

C D

3,3	4,0
0,4	1,1

Prisoner's Dilemma

Group - Payoffs

• Cooperate - Cooperate

$$0 3 + 3 = 6$$

• Cooperate - Defect

$$\circ$$
 4 + 0 = 4

• Defect - Defect

$$\circ$$
 1 + 1 = 2

 \mathbf{C}

D

Prisoner's Dilemma

Group - Payoffs

• Cooperate - Cooperate

$$\circ$$
 3 + 3 = 6

• Cooperate - Defect

$$0 4 + 0 = 4$$

• Defect - Defect

$$\circ$$
 1 + 1 = 2

C D

3,3	4,0
0,4	1,1

Optimums

Individual: Group:

Optimums

Individual:

Group:

 ${\it Cooperation} < {\it Defection}$

Optimums

Individual:

Group:

 ${\it Cooperation} < {\it Defection}$

Cooperation > Defection

Optimums

Individual:

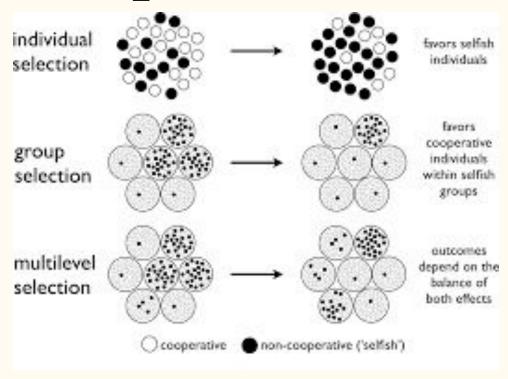
Group:

Cooperation < Defection

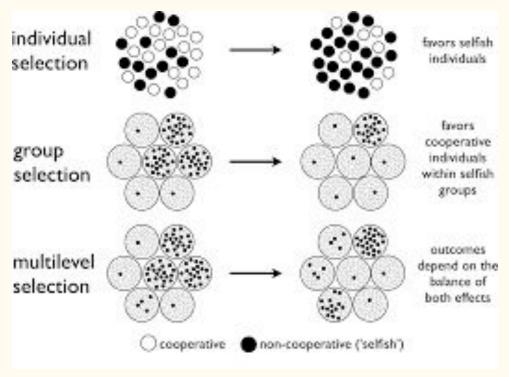
Cooperation > Defection

Social Dilemma: A situation where the decision that optimizes the individual is in opposition to the decision that optimizes the group

Cooperation is Ephemeral & Vulnerable


1. Norms & Institutions

- 1. Norms & Institutions
- 2. Kin Selection


- 1. Norms & Institutions
- 2. Kin Selection
- 3. Group Selection

Group Selection

Group Selection

Group Selection

"Selfisness beats altruism within groups, Altruistic Groups beat selfish groups. Everything else is commentary"

- D.S. Wilson & E. O. Wilson, 2007

- 1. Norms & Institutions
- 2. Kin Selection
- 3. Group Selection

- 1. Norms & Institutions
- 2. Kin Selection
- 3. Group Selection
- 4. Reciprocity

- 1. Norms & Institutions
- 2. Kin Selection
- B. Group Selection
- 4. Reciprocity

- Doing unto others as they have done unto you

- Doing unto others as they have done unto you
- Positive Reciprocity:

- Doing unto others as they have done unto you
- Positive Reciprocity: You scratch my back, I'll scratch yours

- Doing unto others as they have done unto you
- Positive Reciprocity: You scratch my back, I'll scratch yours
- Punitive Reciprocity:

- Doing unto others as they have done unto you
- Positive Reciprocity: You scratch my back, I'll scratch yours
- Punitive Reciprocity: You screw me, I'll screw you

Requirements:

1. Repeated Interactions/Rounds

- 1. Repeated Interactions/Rounds
- 2. Structured Interactions

- 1. Repeated Interactions/Rounds
- 2. Structured Interactions
 - a. Persistent Partnerships

- 1. Repeated Interactions/Rounds
- 2. Structured Interactions
 - a. Persistent Partnerships
 - b. Relatively Small Groups

Direct Reciprocity:

Direct Reciprocity:

Repeated interactions with the same Partner

Direct Reciprocity:

Repeated interactions with the same Partner

Breaks down if endpoint is known

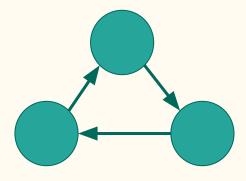
Direct Reciprocity:

Repeated interactions with the same Partner

Breaks down if endpoint is known End of Game Effects

End of Game Effects

End of Game Effects

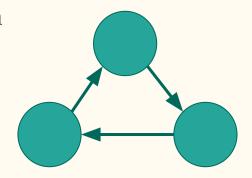

• Players in repeated games where the final round is known tend to stop cooperating.

End of Game Effects

- Players in repeated games where the final round is known tend to stop cooperating.
- Cooperation Sustains when the final round is not known.

Uncertainty about future interactions & reciprocity sustain cooperation in humans

Indirect Reciprocity:


Indirect Reciprocity:

Repeated interactions with a small pool of known Potential partners

Indirect Reciprocity:

Repeated interactions with a pool of known Potential partners

End Of Game Effects Hold

Indirect Reciprocity:

Repeated interactions with a small pool of known Potential partners

End Of Game Effects Hold

Reputation & Punishment Emerge

Reputation

Reputation

Round 1: C

Round 2: C

Round 3: C

Reputation

Round 1: C

Round 2: C

Round 3: C D

Round 4 C D C D

Reputation

Round 1: C

Round 2: C

Round 3: C

Round 4 D

Reputation & Punishment?

Round 1: C

Round 2: C

Round 3: C

Round 4 D

Reputation & Punishment?

Roun	d 1: C	\mathbf{C}
Roun	d 2: C	D
Roun	d 3: C	D
Round 4	D	D
	Punish	Reputation

Small Groups & Long Memories Promote Cooperation

- Stewart & Plotkin 2016

Nicky Case's Evolution of Trust